
www.manaraa.com

1

Software Components in a Data Structure Precompiler1,2

 Marty Sirkin, Don Batory, Vivek Singhal
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

Abstract: PREDATOR is a data structure precompiler that generates efficient code for
maintaining and querying complex data structures. It embodies a novel component reuse
technology that transcends traditional generic data types. In this paper, we explain the con-
cepts of our work and our prototype system. We show how complex data structures can be
specified as compositions of software building blocks, and present performance results
that compare PREDATOR output to hand-optimized programs.

Keywords: components, software reuse, compiler, data structures.

1.0 Introduction
Designing, writing, and debugging programs is a time-intensive task. Of the different aspects of writ-

ing programs of moderate to large complexity, implementing data structures often consumes a dispropor-
tionally large fraction of a programmer's time. Adata structure compiler is a suite of tools that reduces the
burden of programming data structures. There have been several attempts to produce such compilers. Two
such compilers are [Coh91, Nov92]. In general, however, data structure compilers have not achieved a
broad level of acceptance. The reasons include inadequate performance, unnecessary complexity, host lan-
guage restrictions, and limited scope.

Eliminating the drudgery of programming data structures is clearly an important problem. We believe
the solution rests on a software component technology that is defined by a combination of concepts from
databases, compilers, transformation systems, and domain modelling. While none of these concepts are
new, we are presenting a unique combination that yields a technology for assembling complex data struc-
tures from plug-compatible components.

Two goals of a data structure compiler should be:

1. To generate efficient code, i.e. within 10% of highly tuned and hand optimized code.

2. To allow programs to be easily written in a data structure independent manner. This would allow data
structures to be changed without modifying the application program.

When programs employ component technologies, there are two distinct phases of software develop-
ment:component creation andapplication writing. Component creation involves the definition of the inter-
face and the implementation of software components. In the application writing phase, components are
combined with customized (application-specific) code to form the completed program. Occasionally, a
programmer is forced to implement new components, thus mixing the two phases.Our research aims to
simplify component creation and reduce the necessity of implementing new components.

1. This research was supported in part by grants from Texas Instruments, IBM, and Digital Equipment Corporation.

2. This paper will also appear in Proceedings of the 15th International Conference on Software Engineering
(Baltimore, MD), May 1993.

www.manaraa.com

2

Our project is called PREDATOR, which is a (misspelled) acronym for PREcompiler for DAta sTRuc-
tures. In this paper, we motivate the need for PREDATOR by exposing important limitations of traditional
parameterized types, the central concept upon which all existing data structure compilers are built (to our
knowledge). We then discuss the required abstractions and how they eliminate the limitations that we iden-
tify.

2.0 Traditional Parameterized Types
Existing data structure compilers accomplish software reuse throughtraditional parameterized types

(TPTs), e.g., C++ templates [Str91] and ADA generics [Ghe82]. A TPT is a generic type whose parametric
instantiations define a family of related types. The classic example is the array, which can be instantiated to
produce arrays of integers, arrays of strings, etc. TPTs can be instantiated by primitive types or by other
instantiated TPTs. For example, Figure 1 depicts a linked list TPT that has been instantiated with a binary
tree TPT, where each node of the list is the root of a distinct binary tree.

Figure 1: Traditional parameterized type: a list of trees

There is no consensus on how software reuse can be achieved [Big89]. In our opinion, there are three
requirements for successful software reuse. First, software components must bedesigned to be plug-com-
patible and interchangeable. Second, programming languages should provide appropriatefeatures for
implementing such designs. And third, these designs and programming language features should not incur
exorbitantperformance penalties.

TPTs and their conventional use are insufficient to achieve these requirements. The following discus-
sion explains why:

1. Difficulty of specialization (conceptual limitation). A TPT offers operations that its author believes
are adequate for a wide variety of applications. A queue TPT, for example, would likely provide the
operations enqueue, dequeue, is_empty andis_full. However, in the context of a specific application, it
occurs frequently that additional operations, unforeseen by the TPT author, are needed. Suppose that it
is necessary to delete items located in the interior of a queue. Using only the given operations, one must
dequeue each item, check to see if it is the requested item, and enqueue it if it is not. Typically the end
of the queue is determined by either knowing the size of the queue or by using an end-of-queue marker.

List header

www.manaraa.com

3

Clearly this is both inefficient and awkward. The situation is no better for stacks.3

Specializationis the process of modifying a type to provide a customized interface for an application.
Specialization of TPTs poses some difficult problems [Boo87, Coh90, Pal90, Str91]:

• Attempting to provide an exhaustive TPT interface actually discourages reuse. Programmers are
intimidated by complex interfaces and would rather design their own.

• Given TPT source code, a programmer could attempt to integrate his own changes. However, this
essentially nullifies the productivity advantages of TPTs, as programmers must now understand
someone else’s code in order to write and debug their extensions.

• New operations can be defined in terms of existing operations. However, it may not be possible to
efficiently implement new operations. (Recall the queue example).

These problems force the application writer to choose from these unattractive alternatives: not using
TPTs at all, modifying TPT source code, or accepting performance inefficiencies. Even with the addi-
tion of object-oriented inheritance, these problems remain.

2. Complex compositions (conceptual limitation). It is widely believed that TPTs are the appropriate
abstraction for encapsulating primitive data structures [Boo87, McN86a, McN86b]. More complex
structures, such as the one depicted in Figure 1, are created through TPT compositions.

Software component libraries are unlikely to provide implementations for many data structures used in
practice; rather, the idea is to form complex structures through composition of available TPTs. A simple
example is a data structure that simultaneously links its elements onto a binary tree (to maintain one
ordering of the elements) and onto a linked list (to maintain a second ordering). Figure 2 illustrates this
structure. Each node contains pointers for both a binary tree and a linked list. Note that the root of the
tree need not be the same as the head of the list.

Figure 2: A binary tree/linked list data structure

It is important to recognize that the structure in Figure 2cannot be created by a parametric instantiation
of the tree and linked list TPTs; a list of binary trees (Figure 1) and a binary tree of lists are definitely
not equivalent to the structure of Figure 2.

3. While this example seems contrived, it really is not. A supermarket checkout line is a queue. A common event is
for a customer to leave the middle of a queue when he realizes he needs another item.

Left tree pointer

Right tree pointer

Linked list pointer

List head Tree root

www.manaraa.com

4

The structure of Figure 2 can be created using TPTs and multiple inheritance. Moreover, application
programmers must write additional “glue” code to achieve the correct semantics in the resulting “com-
posite” TPT.Mapping TPTs [Boo87] could be used to simulate (but not match identically) the structure
of Figure 2, but “glue” code still needs to be written. Moreover, the resulting composite TPT incurs a
performance penalty because mapping TPTs introduce pointer indirections.

Component composition is a basic operation of a data structure compiler. As stated earlier, a fundamen-
tal goal of data structure compilers is to automatically generate the “glue” code without incurring per-
formance penalties. Thus, TPTs alone are not sufficient to define complex data structures.

3. Type transformations (conceptual limitation).Data structures can be modelled as mappings or type
transformations, where an abstract type, devoid of any data structure implementation details, is mapped
to a concrete type where details are visible. For example, a linked list TPT addsprevious andnext
pointers to the records that it stores.

Inheritance is a simple but common example of such transformations. That is, inheritance can add new
fields and new operations to data types. However, there are many other type transformations that cannot
be expressed in terms of field or operation additions. For example, a compression transformation maps
an abstract record type to a completely different type in which the fields of the original record type are
no longer identifiable. A partitioning transformation, which divides records into (say) 100 byte seg-
ments, may not partition abstract records cleanly along field boundaries. Only after the abstract record
is reassembled from its partitions can the original fields (and their contents) be accessible. These are
only two of many possible type transformations that occur in data structures. Because TPTs rely on
mechanisms such as inheritance to transform types, TPTs cannot express certain type transformations,
and hence cannot express important classes of data structures.

4. Field parameters (conceptual limitation). To our knowledge, parameterized types of existing pro-
gramming languages may only be instantiated with constants, functions, and data types [Ghe82]. Cer-
tain data structures may require TPTs to have fields as parameters. An ordered linked list TPT, for
example, would be parameterized by the record type to be stored, and the field within that record type
on which the list elements are to be sorted. While the concept of TPTs does not preclude field parame-
ters, the need for field parameters has not been fully appreciated.

5. Ad hoc interfaces (design limitation). Most TPTs have unique interfaces. This means that the TPT
interface for linked lists is (typically) different from that of arrays, binary trees, etc. When an applica-
tion program is written using a specific TPT, it is difficult to change the underlying data structure (TPT)
without triggering a substantial rewrite.

It is often the case that the best choice of data structures for an application can only be made late in the
development process. If TPTs have unique interfaces, then it may be too expensive to retrofit a better
suited data structure into existing code. A basic goal of a data structure compiler is to support the inter-
changeability of data structures without impacting program correctness. This can be accomplished by
carefully designing standardized interfaces for TPTs. Poorly designed TPTs or TPTs with incompatible
interfaces make the task of a data structure compiler difficult, if not impossible. In practice, we note that
existing component libraries [Boo87, Boo90, Lea88] tendnot to provide the same interface for all com-
ponents.

6. Code efficiency (implementation limitation). A standard technique of implementing TPTs is to com-
pile the code for each TPT component separately, where references and manipulations of generic
objects are performed via pointers [Ghe82]. This introduces unnecessary runtime overhead.

Another technique of TPT implementation is macro expansion [Str91]. Macro expansion by itself is not
always sufficient to provide efficient code, because context information is not considered when optimiz-
ing the code which results from expanding TPT compositions.

www.manaraa.com

5

In current data structure compilers, TPTs provide a useful framework for describing reusable software
components. However, for the reasons outlined above, TPTs have conceptual, design, and implementation
barriers which preclude the creation of practical data structure compilers.

3.0 Overcoming TPT Limitations
As mentioned in the introduction, our research is based on a combination of ideas from databases,

compilers, transformation systems, and domain modelling. This section describes the basic ideas underly-
ing our work and explains how they overcome the TPT limitations previously identified.

3.1 Design Limitation: Ad Hoc Interfaces

Many common data structures are implementations of a rather simple abstraction: acontainer of
objects; binary trees, lists, and arrays are examples. The choice of container implementation is often made
for performance reasons. There are many possible interfaces to containers; most expose the container’s
implementation. However, research on relational databases and persistent object stores have identified
interfaces that do not expose a container’s implementation [Kor91, Lam91]. Such interfaces are ideal for
use in data structure compilers because they promote interchangeable data structure components.4

To simplify the design of our data structure compiler, we have carefully selected an interface that is
shared by all data structures. This interface does not expose data structure implementations, and thus per-
mits one component to be swapped with another. Exchanging data structure components makes tuning of
application programs much easier.

Consider the example of Figure 2. Suppose the records that are stored in this container are of type
customer . In PREDATOR syntax, this data structure would be declared as:

CONTAINER tree_list ON ELEMENT customer = bintree(list(malloc));

The typetree_list storescustomer records in a container that is defined by the composition of the
bintree , list , andmalloc data structures.customer records are stored in a binary tree. The nodes of
the binary tree are chained together on a linked list, and list nodes are dynamically allocated on a heap. The
abstract transformation model that underlies components and their composition is discussed in Section 3.3.

Our container interface largely reflects work on embedded relational languages and persistent lan-
guages. Iterations over subsets of objects in a container are accomplished through the use of iterators or
cursors [Ghe82, Kor91, ACM91, Boo87]. Cursors provide SQL-likeselect capabilities where program-
mers declaratively specify via predicates the records (or objects) of a container that they want to retrieve
[Dat83]. Table 1 lists some of the operations of our container interface.

In PREDATOR, cursors and containers are first-class objects. They may be saved in variables, passed
to functions, and stored in containers.

4. Note that typical database systems offer multiple container implementations which can be either selected by users
or chosen at runtime by query optimizers. Databases are classical examples of systems that have successfully
exploited plug-compatible implementations of containers [Bat90].

www.manaraa.com

6

3.2 Concept Limitation: Difficulty of Specialization

The interface described in Table 1 was the result of adomain modelling [Pri91] effort. This interface
reflects the operations that can be performed on all data structures. Moreover, the generality and practical-
ity of this interface has been substantiated by twenty five years of research in databases, because our con-
tainer interface is virtually identical to the programming language interface for relations in relational
databases [Kor91].

We stated in Section 2 that TPT authors cannot envision all specializations. Yet, the interface that we
have chosen has historically shown to be general enough to permit the definition of any other container
interface. The programming language Pascal/R [Sch77], for example, allowed users to customize the inter-
face to relations by letting them place their own abstract data type (ADT) interfaces on top of relations and
to implement ADT operations as calls to relational operators. The power of relations (containers) still
remained, but a customized interface would be used in place of a relational interface.

Given our container interface, it is straightforward to define specialized interfaces to containers. For
example, while it is unusual to envision stacks with a relational interface, it is easy to define thepush and
pop operations in terms of relational operations, as shown below.

TABLE 1. Partial list of primitive functions

Function Call Meaning

CURSOR(k, [p [, o]]) Create and return a cursor over containerk. The cursor can be positioned only on
objects that satisfy predicatep and the selected objects are returned in ordero. Both
predicatep and ordero are optional.

RESET(c, l) Repositions cursorc either to the start of the container or to the end (based on thel
argument).

ADVANCE(c) Repositions cursorc on the next qualified object inc’s container. A status code is set in
the cursor to OK if the advance succeeds, EOR otherwise.

REVERSE(c) Repositionsc to the previous qualified object in the container. The status code is set as
in ADVANCE.

INSERT(k, o, c [, h]) Insert objecto into containerk. Cursor c is an output parameter which is positioned on
o in k. h is an optional hint about where to place objecto (i.e., AT_END, AT_FRONT,
AFTER or BEFORE (the position indicated by cursorc that has been positioned previ-
ously). If no hint is supplied, the data structure semantics determine the positioning of
the new object.

DELETE(c) Delete the object referenced by cursorc.

UPDATE(c, a, v) Assigns the valuev to the attributea of the object referenced by cursorc

REF(c, a) Return the value of attributea of the object referenced by cursorc.

FOREACH(c)
{code}

Execute the code fragmentcode for each object that can be referenced by cursorc. c is
reset to the start of the container and is iterated through the container.

FIND(c, p) Position cursorc to the next object that satisfiesc’s predicate and the additional predi-
catep. The status code is set as in ADVANCE

GETREC(c, o) Retrieve the object referenced by cursorc and place it into the buffer specified byo.

ADDRESS(c) Return the location of the object referenced by cursorc.

POSITION(c, a) Position cursorc on the object with locationa.

SWAP(c1, c2) Swap the objects referenced by cursorsc1 andc2. Both cursors are referencing objects
in the same container.

www.manaraa.com

7

MACRO pop(container, element)
{
 INSERT(container, element, container.stack_head, AT_END);
};

MACRO pop(container, element)
{
 if (!is_empty(container))
 {
 GETREC(element, container.stack_head));
 DELETE(container.stack_head)
 REVERSE(container.stack_head);
 }
};

3.3 Concept Limitation: Complex Compositions

We said earlier that data structures can be modelled by type transformations. In this section, we explain
the model in more detail and focus on compositions of transformations. As we will see, a data structure
component corresponds to an implementation of a type transformation.

Let p be a program andc be a container that is referenced byp. We will write this asp(c) . p refers to
c using the generic cursor operations listed in Table 1. Because it is not known howc is implemented,p is
data structure generic – i.e., it is not dependent on any implementation ofc .

The application of a transformationτ introduces data structure implementation detail. When applied to
c , the result is containerc’ . Concomitantly,p must be transformed into a programp’ that operates onc’
and preserves the semantics ofp(c) . Thus, applying a data structure transformationτ as a (possibly par-
tial) implementation ofc transformsp(c) to p’(c’) .

It follows that a data structure component (building block) for containers is a pair of functions
(τκ: C→C, τπ: P→P) whereC is the domain of containers andP is the domain of programs.τκ is acon-
tainer mapping function which transforms an abstract containerc into a concrete (or less abstract) con-
tainerc’ . τπ is aprogram mapping function which transforms a programp into a corresponding program
p’ .

Consider a component for unordered lists (LIST κ: C→C, LIST π: P→P). LIST κ is a container map-
ping function. It links together all objects of a container onto an unordered list. Figure 3a shows a con-
tainerc with six objects. Figure 3b shows the resulting containerLIST κ(c). This container has exactly the
same objects asc , with the addition that each object has anext attribute. The container itself is augmented
with the attributehead to reference the head of the list.5

LIST π: P→P is the corresponding program mapping function.LIST π replaces each operation onc
with the corresponding code fragment that operates onLIST κ(c). For example, an insertion intoc is
mapped to an insertion intoLIST κ(c) followed by a link of the object onto a list. That is, the operation:

INSERT(c, obj, curs);

of programp is transformed into:

5. Note that the order in which objects are linked onto containers reflects the order in which objects were inserted.
This ordering is defined by the LISTπ function. Thus, there is a unique container that results from a LISTκ mapping.

www.manaraa.com

8

INSERT(c’, obj, curs);
UPDATE(curs, Next, c’.head);
c’.head = ADDRESS(curs);

of programp’ . Writing transformations for other cursor operations onc is straightforward.

Now consider the component for binary trees: (BINTREEκ: C,A→C, BINTREEπ: P,A→P) whereA is
the domain of attributes for key fields.BINTREEκ is a container mapping function. Given a container and a
key field,BINTREEκ produces a container where all objects of the container are linked together onto a
binary tree. Each object inc is transformed by the addition of two fields (left andright). The container
itself is augmented with the attributeroot to reference the root of the binary tree. Figure 4 shows the map-
ping ofc to BINTREEκ(c , a) wherea is an attribute of the objects inc .

Figure 3: A simple container transformation

BINTREEπ is the corresponding program mapping function. It transforms operations onc to operations
on BINTREEκ(c , a). For example, inserting an object intoc is mapped to inserting the object intoBIN-
TREEκ(c , a) followed by linking of object into the binary tree.

A key feature of this component abstraction is the symmetry of their mappings: containers are mapped
to containers and programs are mapped to programs; the standard container interface remains invariant
with respect to data structure transformations. This means that many different combinations of components
are possible; each yields a different data structure and its support algorithms.

The example of Figure 2 depicts an implementation of containerc that is implemented by a composi-
tion of the binary tree and list components:LIST κ(BINTREEκ(c)). Each object ofc is augmented with the
binary tree fieldsleft andright , and then is augmented with the linked list fieldnext . The resulting
programLIST π(BINTREEπ(p)) transforms an object insertion inc into an insertion into the container
LIST κ(BINTREEκ(c)), a link of the object onto the list, and then a link of the object onto the binary tree.

(a) Containerc with 6 objects (b) LIST κ(c)

Head

www.manaraa.com

9

Every component is parameterized by the container and program that it is to map. We call these com-
ponentsnontraditional parameterized types (NPTs). A container TPT is a composition of NPTs; NPTs are
the software primitives from which an enormous class of container TPTs can be built.

Figure 4: Binary tree transformation

Programmers can choose from a large number of NPTs. Besides unordered lists and binary trees, there
are NPTs for arrays, AVL trees, data compression (which transforms a container of uncompressed objects
into a container of compressed objects), persistence (which transforms a container of objects in main mem-
ory into a container of objects on disk), indexing (which transforms a container of non-indexed objects into
a container of indexed objects), client-server (which transforms a container of objects that appear to be
stored locally into a container of objects stored remotely), and so on.

In addition to PREDATOR, another prototype implementation of these ideas is the Genesis extensible
database management system. Genesis can produce a customized DBMS of 70K lines by assembling pre-
fabricated components [Bat88, Bat90].

3.4 Concept Limitation: Type Transformations

Recall that there are type transformations which do not add fields and operations to data types. Two
examples aresegment andserver . segment partitions a data type along a designated field boundary;
server stores instances of a data type on a remote machine.

Consider the following data type and transformation composition:

struct base_elem
{
 char name[30];
 int age;
 int height;
 BYTE image[1000000];
};

CONTAINER test_cont ON ELEMENT base_elem =
segment(dlist(server(“m”), height, dlist(server(“m”)));

(a) Containerc (b) BINTREEκ(c , a)

Root

www.manaraa.com

10

The benefit of this particular NPT composition is efficiency. If a program does not access theimage
field, then only thename, age , andheight fields are transmitted from the remote server “m”. The data
types that result from this transformation are shown below, and are automatically generated by PREDA-
TOR:

struct base_elem_seg0
{
 char name[30];
 int age;
 int height;

 struct base_elem_seg0 *next, *prev;
 struct base_elem_seg1 *seg1;
};

struct base_elem_seg1
{
 BYTE image[1000000];

 struct base_elem_seg1 *next, *prev;
};

3.5 Design Limitation: Field Parameters

The example of the previous section also demonstrates the utility of NPTs with field parameters. The
segment transformation requires a field name in order to know where to partition the original data type.
Other examples of transformations with field parameters include ordered lists, B-trees, etc.

Because PREDATOR is a precompiler, it can easily perform type transformations that are much more
complicated than just the addition of fields and operations, as provided by inheritance. We know of no
other statically typed programming language (or data structure compiler) that supports the definition of
complex type transformations.

3.6 Implementation Limitation: Code Efficiency

The efficiency of TPT code, particularly data structure code, is critical for most applications. Our work
utilizes a precompiler optimizer to produce efficient code. There are several advantages to this approach:

1. When PREDATOR composes multiple NPTs, it performs compiler optimizations such as common sub-
expression elimination and partial evaluation.

2. PREDATOR expands inline code, thus removing runtime functional call overhead [Dav92].

3. PREDATOR optimizes queries to determine the most efficient way to traverse a container [Kor91].

In the following sections, we report the results of three experiments using PREDATOR. We specifi-
cally examine the performance of generated code, the potential gains in software productivity, and the
advantages of using plug-compatible data structures. It should be emphasized that these results are prelim-
inary and should not be taken as definitive – merely indicative.

3.6.1 Experiment #1: Simple Arrays

The first experiment examines productivity gains and the potential efficiency of PREDATOR-gener-
ated code. We asked a group of eight professional programmers to write a simple four step program involv-
ing a trivial data structure – a static array in which records could be marked deleted. The four steps were:

www.manaraa.com

11

• Eight records were copied from a static constant array into the target data structure. Each record
was marked “not deleted.”

• An iteration was made over all records and each record was printed.

• Another iteration was made where each record that satisfied a supplied predicate was deleted.

• A final iteration printed all non-deleted records.

Each participant was asked to write three versions of the program: a quick and dirty version, a hand-
optimized version, and a version using PREDATOR, and to note the time taken for each task. All of the
programs were written in C, and compiled using thegcc compiler. We removed all I/O statements and exe-
cuted the resulting program fragment 10,000 times using UNIX profiling tools to gather performance sta-
tistics. Table 2 summarizes the results.

These results of Table 2 suggest that (a) even in trivial programs, there are clear productivity benefits
when programming with container abstractions, and (b) efficient code can be generated by a data structure
compiler. We anticipate that these benefits will be magnified once more complicated data structures are
used.

3.6.2 Experiment #2: Berkeley Quicksort

A second experiment involved writing a data-structure-generic quicksort algorithm and comparing its
performance to BSD UNIX quicksort, a hand-optimized quicksort routine. In studying the BSD version,
we noticed that:

• it only works on contiguous arrays,

• it is optimized for a data record size of 48 bytes, and

• it is quite difficult to understand. Modifying and debugging BSD quicksort is nontrivial.

Initially we intended to extract the data structure generic algorithm implemented by the BSD code, but
discovered that it was too tightly coupled to the array data structure for this to be possible. Instead, we
implemented the quicksort algorithm in [Aho83] with a pivot selection and base case handling similar to
the BSD version. This was important, as it assured the asymptotic complexity of both algorithms would be
similar, thereby permitting a fair comparison to be made.

We exploited the data-structure-generic nature of the PREDATOR quicksort algorithm by plugging in
two different container implementations. Again, this only required a trivial change in the container declara-
tion; no change was needed in the PREDATOR quicksort algorithm.

The first data structure was an array, the data structure used by BSD quicksort. The second was a seg-
mented record data structure: the primary segment simply contains a pointer to the secondary segment,
which contains the data fields. This choice of segmentation is particularly appropriate because quicksort
frequently swaps data records. In a segmented implementation, a record swap operation translates to a
pointer swap operation whose time cost is independent of record size.

Table 3 compares the size of these three programs as computed by the UNIX word count (wc) utility.
PREDATOR code is shorter and much easier to understand. Also note that the size of the generated PRED-

TABLE 2. Simple array program results

Programming system Average time to write (min) Average execution time (sec)

Hand code (1st pass) 24.5± 7.5 17.5± 3.6
Hand code (optimized) 34.8± 9.1 12.2± 2.5
PREDATOR 8.0± 2.5 9.6± 0.1

www.manaraa.com

12

ATOR code is much (30%-40%) larger than the precompiler source; PREDATOR is optimized for speed
over size.

The actual experiments involved sorting randomized sets of unique records. Randomization is impor-
tant because the two algorithms use slightly different pivot selection methods. Uniqueness is significant
because the PREDATOR [Aho83] algorithm improves greatly when there exist duplicates and we did not
want that to bias the results. Also, we ran each sample size many times to arrive at an accurate mean time.

The following graph shows the average sorting time for sample sizes ranging from 1000 to 110,000
records. The record size was set to 48 bytes. The sort key was composed of three fields, two 20 character
strings and one integer with the primary field being a string.

Figure 5 shows a constant factor of time difference between the BSD execution time and that for each
of the two PREDATOR examples. Thus, we conclude that the algorithms have the same asymptotic com-
plexity. This means that we are measuring the true efficiency of the generated code, not the order of com-
plexity of the different algorithm implementations.

TABLE 3. Source code size comparison

Source file Number of words

BSD Quicksort 460

PREDATOR Source 323

Array (generated) 462

Segment (generated) 531

0 50000 100000 150000
Number of records

0

10

20

30

40

T
im

e
(s

ec
)

48 byte records

BSD Quicksort
PRED Array
PRED Segment

Figure 5: Quicksort performance

www.manaraa.com

13

Figure 6 and Figure 7 show the effect of varying the size of the data record on the execution times. We
measured this both for small and large data set samples and found similar behavior in both cases. Both the
BSD quicksort and the PREDATOR array vary linearly in the size of the data record. This makes sense
since they both copy the entire data record during a record swap. The PREDATOR segment case, however,
is clearly superior to the other two because only the pointers to records, not the records themselves, are
swapped. The very slight increase in the segment times is due to page faulting. Also note that there is a
small region in which the BSD sort is superior to the PREDATOR array. This occurs at a record size of 8
bytes or below. This is due to the start-up costs associated with the segmentation and could be reduced
even further with improvements to the PREDATOR optimizer.

We believe the advantages that the PREDATOR quicksort demonstrates over the BSD quicksort are:

• The PREDATOR version is generic, i.e. it works forany unordered data structure.

• The PREDATOR version was quick to write, easy to understand and can be modified without
much difficulty. We do not feel that this is true of the BSD quicksort.

• The performance of the prototype PREDATOR precompiler compares impressively against
shipped, optimized code which is currently being used by many programmers.

3.6.3 Experiment #3: The rwho Utility

Many UNIX system utilities (rwho, ls, df, etc.) are fairly simple programs. In general, they involve
data collection, placing the results in a data structure, sorting, and printing the results. These utilities are
perfect candidates for re-implementation with PREDATOR.

rwho is a utility which prints a list of users who are logged on to the various machines in a local net-
work. It reads this information from data files, stores data in an array, sorts the array, and prints the results.

0 50 100 150 200
Record size (bytes)

0

2

4

6

8

T
im

e
(s

ec
)

Varying record size

BSD Quicksort
PRED Array
PRED Segment

Figure 6: Quicksort of 1000 records

www.manaraa.com

14

rwho uses BSD quicksort and stores the data in a static array. If there happen to be more than 100 entries,
rwho fails. This is an example of unnecessary data structure dependencies that affect program behavior.
PREDATOR-style programs with generic algorithms can easily remove this type of dependence.

We rewroterwho using PREDATOR in less than an hour. We chose a linked list data structure to
remove the upper limit on the number of entries. While its performance is (marginally) better than that of
the originalrwho, the important point here is that PREDATOR helped us improve the functionality of the
rwho program in a convenient manner.

4.0 Assessment and Conclusions
We believe that data structure compilers can offer significant productivity gains without sacrificing

performance. We have identified conceptual, design, and implementation limitations in traditional parame-
terized types (TPTs). We believe that TPTs alone are not sufficiently powerful to form the foundation of a
data structure compiler.

To overcome the limitations of TPTs, we have presented several techniques for capturing data struc-
tures as NPTs (i.e. type transformations). Using PREDATOR, NPTs can be combined to produce efficient
implementations of complex data structures. In addition, by designing NPTs to have the same interface,
plug-compatibility and interchangeability is assured. Thissignificantly simplifies the task of building a
data structure compiler and enhances opportunities for software reuse.

PREDATOR is based on concepts from databases, compilers, transformation systems, and domain
modelling. By themselves, the ideas presented here are not new. However, we do believe their combination
is unique for solving important problems in data structure compilers.

Our preliminary results using PREDATOR are promising. We have found that programmers are able to
write data-structure-independent code more easily, that the generated code is efficient, and that software

0 20 40 60 80 100
Record size (bytes)

0

20

40

60

80
T

im
e

(s
ec

)
Varying record size

BSD Quicksort
PRED Array
PRED Segment

Figure 7: Quicksort of 99000 records

www.manaraa.com

15

reuse is accomplished. Moreover, our model is sufficiently robust to handle NPTs for all data structures
known to us, as well as features such as concurrency, persistence, and distribution.

5.0 References
[ACM91] ACM, Next Generation Database Systems,Communications of the ACM, October 1991.

[Aho83] A.V. Aho, J.E Hopcroft, and J.D. Ullman,Data Structures and Algorithms, Addison-
Wesley, 1983.

[Bat88] D.S. Batory, Concepts for a DBMS Synthesizer,ACM PODS, 1988.

[Bat90] D.S. Batory, The Genesis Database System Compiler: User Manual, University of Texas
TR-90-27.

[Big89] T. Biggerstaff and A. Perlis,Software Reusability, ACM Press, 1989.

[Boo87] G. Booch,Software Components with ADA, Benjamin/Cummings Publishing, 1987.

[Boo90] G. Booch, M. Vilot, The Design of the C++ Booch Components,OOPSLA ECOOP 90,
ACM Press, 1990.

[Coh90] S. Cohen,Ada 9X Project Report, 1990.

[Coh91] D. Cohen,AP5 Manual, USC Information Sciences Institute, 1991.

[Dat83] C.J. Date,An Introduction to Database Systems, Addison-Wesley, 1983.

[Dav92] J. Davidson, Subprogram Inlining: A Study of its Effects on Program Execution Time,
IEEE Trans. on Soft. Engr., February 1992.

[Ghe82] C. Ghezzi and M. Jazayeri,Programming Language Concepts, John Wiley & Sons, 1982.

[Kor91] H.F. Korth and A. Silberschatz,Database System Concepts, McGraw-Hill, 1991.

[Lam91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, The ObjectStore Database System,
Communications of the ACM, October 1991.

[Lea88] D. Lea, libg++, The GNU C++ Library,C++ Conference USENIX Association, Denver,
CO 1988.

[McN86a] D.G. McNicoll, C. Palmer, et al.,Common Ada Missle Packages (CAMP) Volume I:
Overview and Commonality Study Results, AFATL-TR-85-93, May 1986.

[McN86b] D.G. McNicoll, C. Palmer, et al.,Common Ada Missile Packages (CAMP) Volume II:
Software Parts Composition Study Results, AFATL-TR-85-93, May 1986.

[Nov92] G. Novak, Software Reuse by Compilation through View Clusters, Submitted for
publication in IEEE Transactions on Software Engineering, 1992.

[Pal90] C. Palmer and S. Cohen, Engineering and Applications of Reusable Software Resources,
Aerospace Software Engineering: A Collection of Concepts, ed. C. Anderson and M.
Dorfman, Vol. 136,Progress in Astronautics and Aeronautics, 1990.

[Pri91] R. Prieto-Diaz and G. Arango,Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, 1991.

[Sch77] J. Schmidt,Some High Level Language Constructs for Data of Type Relation, ACM
TODS, 1977.

[Str91] B. Stroustrup,The C++ Programming Language, 2nd edition, Addison-Wesley, 1991.

